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Land surface temperature and emissivity (LST&E) are essential parameters for a 

wide range of studies undertaken at a variety of spatial scales. LST&E products are 

generated by a number of spaceborne sensors such as ASTER, MODIS, and AIRS at 

varying spatial, spectral and temporal resolutions. We have developed an approach for 

producing gridded, mean, seasonal ASTER LST&E Datasets at a spatial resolution of 

100 m at nadir. We have produced a mean wintertime and summertime emissivity 

dataset for California and Nevada, USA using all available data since mission launch 

(2000). Comparison of the two seasonal datasets indicates the greatest variability 

occurs in areas affected by snow such as the Sierra Nevada Mountains, and in 

agricultural regions. Comparisons of the new emissivity dataset with laboratory 

measurements of geologic samples show emissivity differences of less than 0.5%, while 

1- 3% differences were found for water and vegetation using spectra from the MODIS 

UCSB library. 
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1. Introduction 

One of the most important Earth System Data Records (ESDR’s) identified by NASA 

and numerous international organizations is Land Surface Temperature and Emissivity 

(LST&E) [King, 1999]. LST&E data are key parameters in the physics of climate 

modeling, ice dynamic analyses, surface-atmosphere interactions and land use, land 

cover change. 

For example, emissivity is a critical component for climate and ecosystem models 

that determine surface radiation budget and energy flux calculations between the 

surface and the atmosphere. Furthermore, knowledge of the surface emissivity is 

needed to recover the Land Surface Temperature (LST), an important climate variable 

in many scientific studies from climatology to hydrology and modeling the greenhouse 

effect. Sensitivity tests indicate that a decrease of soil emissivity by 0.1 will result in 

current climate models having errors of up to 6.6 Wm¡2 in upward longwave radiation for 

their surface energy budget in arid and semi-arid regions [Zhou et al., 2003a; Jin and 

Lang, 2006]. This represents a much larger term than, for example, surface radiative 

forcing due to greenhouse gases. 

The atmospheric retrieval community and numerical weather prediction operational 

centers are expected to benefit from an improved emissivity product from ASTER. For 

example, using constant or inaccurate surface emissivities typically results in large 

temperature and moisture profile errors, particularly over desert and semi-arid regions 

where the variation in emissivity is both large spatially and spectrally [Li et al., 2007]. By 

producing a more accurate emissivity product, along with an error estimate at high res- 
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olution, we aim to minimize what would normally be a major source of error and bias in 

retrieval schemes and the use of satellite radiances in data assimilation. 

ASTER has acquired the necessary data to produce a global, gridded high spatial 

resolution LST&E dataset. To accomplish this, we use current ASTER LST&E products 

(AST_05 and AST_08) provided on a scene-by-scene basis using the Temperature 

Emissivity Separation (TES) algorithm [Gillespie et al., 1999]. TES uses an empirical 

relationship to predict what the minimum emissivity would be from the observed spectral 

contrast [Kealy and Hook, 1993; Matsunaga, 1994] using a calibration curve derived 

from a subset of the ASTER spectral library. TES can recover temperatures within 1.5 K 

and emissivities within 0.015 for a wide range of surfaces. The limitations in the TES 

algorithm arise from three sources; reliance on an empirical function, inaccurate 

atmospheric corrections, and errors in radiometric calibration of the TIR channels. Two 

parameter changes were made to the TES algorithm on August 1st, 2007 as discussed 

in Gustafson et al., (2006). The first removed a threshold classifier for low spectral 

contrast features (water, vegetation) that resulted in artificial step discontinuities in a 

small fraction of ASTER images, and the second removed the iterative correction for 

reflected downwelling irradiance resulting in improved spectral shape and performance. 

The consequence of the first change was a smoother appearance for all images, but at 

the cost of TES underestimating emissivity of graybody scenes such as water by up to 

3%, and vegetation by up to 2%. 

Using the results from TES, we have produced two seasonal, mean LST&E 

datasets, covering the months Jan-Feb-Mar (wintertime) and Jul-Aug-Sep 

(summertime).  In these seasonal datasets, the emissivity is calculated as the average  



DRAFT May 28, 2008, 8:25am DRAFT 

 HULLEY, HOOK, BALDRIDGE: ASTER EMISSIVITY DATABASE      X - 5 

emissivity of all clear-sky pixels for a given location from all scenes acquired in the 

season over the entire period of acquisition of ASTER data (2000-2008). The 

methodology is now discussed together with an evaluation of the seasonal datasets for 

California and Nevada and a validation of this dataset. 

 

2. Methodology 

In order to distinguish between clear and cloudy pixels, a New ASTER Cloud Mask 

Algorithm (NACMA) was developed [Hulley and Hook, 2008]. Using the cloud-mask 

algorithm, it was possible to download all the data for a given location (clear and 

cloudy), and then use the mask in an automated fashion to identify any clear pixels for 

subsequent use. The cloud mask utilizes a variety of spectral tests based on the 

Landsat-7, MODIS and AVHHR cloud assessment schemes and is produced at high 

resolution (100 m). The new cloud mask has been tested over a variety of different 

conditions and scene types and shows significant improvement over the original ASTER 

L1A cloud mask, particularly in detecting cirrus over snow/ice scenes. 

The ASTER Land Surface Emissivity Aggregation Algorithm (ALSEA) was 

developed to produce the gridded dataset. ALSEA processes any number of input 

ASTER LST&E scenes (AST_05 and AST_08) and computes the mean and standard 

deviation for each pixel on a gridded data set. The algorithm has three distinctive 

components: 1) a cloud mask is generated using NACMA and saved for each scene; 2) 

the cloud mask is applied and all intersecting scenes are ‘stacked’ on 0.5° (~50 km) 

grid-boxes at 100 m resolution; 3) the mean and standard deviation are computed for all 

observations on each pixel on the grid-box. 
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Furthermore, an outlier test is included that removes any spurious data that can 

result from lack of convergence of the TES algorithm, a bad atmospheric correction, or 

from undetected cirrus. The outlier test uses the inter-quartile range (IQR) as a measure 

of statistical dispersion which represents the range of the middle 50% of the data. 

Values that fall above or below 1.5*IQR of the 75th and 25th percentile values are 

considered outliers and are rejected. The outlier test is engaged when there are a 

minimum of 5 samples per pixel, and for the California-Nevada area, this represents 

~90% of all pixels.  ASTER data are collected episodically with a repeat cycle of 16 

days, and this occasionally results in ‘streaking’ between very low and very high data 

coverage regions - a limitation of this dataset. 

Our approach of ‘stacking’ multiple scenes together for a given area and computing 

mean values over long time periods maximizes the use of the available data for our 

purpose of generating global, gridded surface datasets compared with the traditional 

mosaicking methods that attempt to seamlessly blend together overlapping scenes for 

short time periods and small test areas. The traditional mosaicing approach works well 

for short periods over areas with good coverage but provides an inconsistent product 

when applied to larger areas over extended time periods. Examples of this approach 

include the work by Scheidt et al. [2007] to study dune fields and sand sheets in the 

Gran Desierto area in Mexico and also by Ogawa et al. [2003] to estimate land surface 

window emissivity (8 - 12 m) in a portion of the Sahara desert. 
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3. Results 

3.1. Seasonal Emissivity Differences 

In order to evaluate ALSEA we have produced seasonal, gridded emissivity datasets 

for California and Nevada using all the available daytime ASTER scenes from 2000-

2008 for the winter (Jan-Feb-Mar) and summer (Jul-Aug-Sep). The states of California 

and Nevada provide an excellent test case since they encompass a broad range of 

emissivities and cover types from low values in the quartz-rich desert areas of 

southwestern California, to high values over the northern California forests. In general, 

the summertime emissivity dataset should correspond to the time of maximum 

vegetation cover and therefore highest emissivity, while the wintertime emissivity 

datasets should correspond to minimum vegetation cover (maximum soil exposure) and 

therefore minimum emissivity. The two seasonal end-member emissivity datasets 

typically encompass the maximum emissivity range expected for any given location, and 

the maximum standard deviation within each season. For example, during the summer 

in agricultural regions we should expect to see some variability since crop fields may be 

vegetated in some years and fallow in others. Emissivity in desert regions will also 

change due to variations in soil moisture and vegetation cover. Given both the mean 

and standard deviation we can say not only what the mean seasonal emissivity value is 

for a specific location but also how much range is expected in that emissivity value 

before it becomes unrealistic. 

A total of 3,102 summer and 2,617 winter ASTER scenes were processed for 

California- Nevada using NACMA and ALSEA. Figure 1 shows the mean summer 

emissivity map of California and Nevada for band 11 (8.6 m) at 1 km spatial  
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resolution (for plotting purposes) and Figure 2 shows the difference between the mean 

summer and mean winter emissivity product. Generally the emissivity differences 

between the summer and winter area are very small, typically between +-0.01 emissivity 

units which corresponds to a temperature error of 0.7 K for a material at 300 K and a 

wavelength of 8.6 m. However there are areas which show large variations of up to 0.1 

units, for example the Sierra Nevada Mountains in California (Figure 2-A) and the Schell 

Creek and Snake Ranges in Nevada (Figure 2-B) show large negative differences as a 

result of increased snow cover and therefore higher emissivity values during the winter 

months than the summer months when there is more rock or soil exposure. Areas over 

the Central (Figure 2-C) and Salinas Valleys (Figure 2-D) have large positive 

differences of up to 0.05 units indicating higher emissivities during the summer months 

due to more intensive agricultural practices. This is particularly evident over Kings 

County, a rich agricultural region where almost 70% of land use is reserved for crops, 

vineyards and orchards. Conversely, the Coachella and Imperial valleys just north and 

south of the Salton Sea (Figure 2-E) are also intensive agricultural regions, but have 

small negative emissivity differences from summer to winter. This is because crops in 

this area are grown all year round as a result of the extreme heat during the summer 

months. Also interesting to note is that Honey Lake (Figure 2-F) shows large, positive 

differences as a result of fluctuating water levels and the associated drying out of its 

margin during extended periods of drought. 

3.2. Validation Results 

 In order to validate the new emissivity dataset, the emissivities of selected regions 

were compared with the emissivity of field samples and spectral libraries.  Spectral 
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library measurements included samples of water and vegetation from the MODIS UCSB 

Emissivity Library (http://www.icess.ucsb.edu/modis/EMIS/html/em.html). For the field 

samples, 10 samples were taken from the quartz-rich Algodones dunes on the far 

southeast corner of California (Figure 1-B), and 10 samples were taken from a 

carbonate-rich alluvial fan at Cuprite, NV (Figure 1-A). The Algodones dunes cover an 

area of roughly 13 by 64 kilometers and are very homogeneous. The carbonate alluvial 

fan covers an area of roughly 2 by 1 kilometers. The directional hemispherical 

reflectance of the field samples was measured using the JPL Fourier Transform Infrared 

Spectrometer, converted to emissivity using Kirchhoff’s law, and convolved to the 

ASTER spectral response functions. The field samples were collected at intervals of 

approximately 250 m covering a grid of approximately 500 m2
 at each site. Emissivities 

from the new dataset where then extracted covering a 2x2 pixel area (200 m2) around 

each of the sampling areas for the comparisons. Figure 3 shows a 1° x 1° area of 

emissivity from band 11 (8.6 m) around each of the sampling sites. Areas at each site 

where ASTER emissivities were extracted are marked with black X’s. Figure 4 shows 

the comparisons between ASTER and the laboratory results for each of the sites. The 

emissivity mean and standard deviation (errorbar) are shown at each ASTER 

wavelength for the total number of samples and pixels used. There is excellent 

agreement between the ASTER and laboratory results for both geologic samples. The 

Cuprite carbonates agree to within 0.4% in all bands except band 12 (9.1 m) which 

shows a difference of 1.4%. The Algodones quartz samples agree to within 0.5% for 

bands 10-13 but have a difference of up to 2% in band 14. The cause for the large 

difference in band 14 is still unclear and was also observed by Schmugge et al. (2003). 
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The emissivity of a 5x5 pixel area centered on Lake Tahoe was then compared with 

the emissivity of distilled water from the MODIS UCSB library (Figure 1-C). The 

comparisons show ASTER underestimates the emissivity of water between 2-3% in all 

bands. This underestimation (bias) arises due to changes in the TES algorithm 

discussed in the Introduction. The emissivity of a 5x5 pixel area corresponding to a 

dense stand of conifers in Redwood National Park in northernwestern California (Figure 

1-D) was compared to the emissivity spectra of a pine needle sample (conifer) from the 

MODIS UCSB library. The differences range from 1-2% and again can be attributed to 

TES underestimating the emissivity of low spectral contrast surfaces. It should also be 

noted that leaf/pine-needle samples measured in the lab may not accurately represent 

the canopy scattering effects of natural forested areas. 

 

4. Conclusions 

We have developed an approach for producing a high spatial resolution, mean, 

gridded emissivity product from ASTER data and demonstrated the approach by 

producing the first such land surface emissivity dataset for California and Nevada. The 

ASTER Land Surface Emissivity Aggregation Algorithm (ALSEA) along with a New 

ASTER Cloud Mask Algorithm (NACMA) were developed specifically for this task and in 

combination are able to assimilate any given number of input ASTER scenes whether 

clear or cloudy. The output product consists of the mean and standard deviation of land 

surface emissivity (all TIR bands) and temperature in 1° grid-boxes at 100 m spatial 

resolution for summer (Jul-Aug-Sep) and winter (Jan-Feb-Mar). Seasonal emissivity 

differences indicate the greatest variability occurs in areas affected by snow such as  
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the Sierra Nevada Mountains and in agricultural regions such as the Central Valley. 

Initial validation of the new emissivity dataset shows promising results for carbonate and 

quartz-rich samples collected in Cuprite, NV and Algodones dunes, CA with differences 

of less than 0.5% when compared to laboratory results. The emissivity of low-contrast 

spectral surfaces (water, vegetation) on the other hand are underestimated by 1-3% 

due to limitations of the TES algorithm.  
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Caption 1 

Mean emissivity map of California and Nevada for band 11 (8.6 m) during the summer 

(Jul-Aug-Sep) at 1 km spatial resolution. Areas A, B, C and D show validation site areas 

in Figures 3 and 4. 

Caption 2 

Seasonal emissivity difference map of California and Nevada (summer minus winter) for 

band 11 (8.6 m) at 1 km spatial resolution. White areas within the border are areas 

with no clear-sky coverage during the winter period. 

Caption 3 

Four validation sites used in this study from clockwise top left; carbonate sediment - 

Cuprite, NV, quartz - Algodones dunes, CA, water - Lake Tahoe, CA, and conifer - 

Redwood National Park, CA. The plots show the mean summer emissivity at 8.6 m, 

and X’s mark the spot where pixels were extracted from the new ASTER emissivity 

dataset for the comparisons with laboratory measurements. 

Caption 4 

Corresponding Emissivity spectra for four sites in Figure 3 showing comparisons with 

the new ASTER emissivity dataset and results from the JPL-FTIR for geologic samples 

collected at Cuprite and Algodones dunes (top two panels), and from water and 

vegetation spectra taken from the MODIS UCSB spectral library (bottom two panels). 
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